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Abstract: Ontology engineering (OE) plays a critical role in modeling and managing
structured knowledge across various domains. This study examines the performance of
fine-tuned large language models (LLMs), specifically GPT-4 and Mistral 7B, in efficiently
automating OE tasks. Foundational OE textbooks are used as the basis for dataset creation
and for feeding the LLMs. The methodology involved segmenting texts into manageable
chapters, generating question–answer pairs, and translating visual elements into descrip-
tion logic to curate fine-tuned datasets in JSONL format. This research aims to enhance
the models’ abilities to generate domain-specific ontologies, with hypotheses asserting
that fine-tuned LLMs would outperform base models, and that domain-specific datasets
would significantly improve their performance. Comparative experiments revealed that
GPT-4 demonstrated superior accuracy and adherence to ontology syntax, albeit with
higher computational costs. Conversely, Mistral 7B excelled in speed and cost efficiency
but struggled with domain-specific tasks, often generating outputs that lacked syntacti-
cal precision and relevance. The presented results highlight the necessity of integrating
domain-specific datasets to improve contextual understanding and practical utility in
specialized applications, such as Search and Rescue (SAR) missions in wildfire incidents.
Both models, despite their limitations, exhibited potential in understanding OE principles.
However, their performance underscored the importance of aligning training data with
domain-specific knowledge to emulate human expertise effectively. This study, based
on and extending our previous work on the topic, concludes that fine-tuned LLMs with
targeted datasets enhance their utility in OE, offering insights into improving future models
for domain-specific applications. The findings advocate further exploration of hybrid
solutions to balance accuracy and efficiency.

Keywords: large language models (LLMs) fine-tuning; ontology engineering (OE); domain-
specific knowledge; search and rescue (SAR)

1. Introduction
OE is fundamental to the organization and structuring of semantic knowledge, which

is increasingly essential in domains such as artificial intelligence, knowledge management,
and digital information systems. Ontologies, by defining concepts and relations between
them, serve as the backbone for systems that rely on contextual understanding and reason-
ing. As the volume and complexity of information grows, traditional manual approaches
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to OE are proving insufficient. This has led to the exploration of advanced methodologies
for OE (especially concerning ontology learning) by leveraging machine learning methods
and natural language processing (NLP).

LLMs, such as GPT-4 and Mistral, represent a significant leap in NLP capabilities,
enabling automation in tasks that previously required extensive human expertise. By
processing vast datasets, LLMs can perform nuanced tasks such as text summarization,
content generation, and knowledge extraction. However, their application in OE—a domain
requiring deep understanding of structure, logic, and domain-specific knowledge—remains
underexplored. Despite their general utility, pre-trained LLMs often fail to meet the
precision and relevance required for tasks such as ontology generation, primarily due to a
lack of domain-specific training.

Fine-tuning involves a detailed procedure where the model’s parameters are adjusted
using a smaller, highly specialized dataset after the initial broad pre-training on extensive
data. This targeted training approach helps in refining the model’s predictions, making
it adept at handling specific types of queries and generating outputs that adhere to the
specialized knowledge structures typical in OE.

The effectiveness of fine-tuning is evident in the model’s enhanced ability to navigate
the intricacies of domain-specific languages and terminologies, enabling it to produce
outputs that are not only grammatically correct but also contextually aligned with the
domain’s requirements. By leveraging fine-tuned LLMs, professionals in OE can automate
the generation of ontological structures, significantly reducing the time and effort involved
in manual ontology construction and potentially increasing the scalability of knowledge
management practices across various domains.

Fine-tuning LLMs for OE tasks represents a confluence of advanced AI capabilities
with the specialized needs of knowledge management. This process underpins significant
improvements in how models understand and interact with complex, domain-specific
datasets, marking a pivotal step towards more intelligent and automated systems in
ontology management.

The primary challenge addressed in this research lies in the limitations of pre-trained
LLMs when applied to OE, creating a gap in their ability to generate outputs with low F1
scores, reflecting poor precision and recall in representing domain-specific concepts and
properties (both object and data properties). This shortcoming underscores the importance
of fine-tuning LLMs to enhance their understanding of OE principles and methodologies.

The objective of this study is to bridge this gap by fine-tuning LLMs on carefully
curated datasets derived from foundational texts in OE. These datasets, encompassing
question–answer pairs, description logic, and translations of visual representations, are
designed to align with the conceptual and structural needs of OE. The study evaluates
the impact of fine-tuning on the models’ ability to generate high-quality, domain-specific
ontologies. This research is driven by two key research questions:

1. Can fine-tuning LLMs for OE concepts significantly improve their performance, en-
abling them to generate outputs with higher accuracy and adherence to ontology syntax?

2. Is the incorporation of domain-specific datasets into the fine-tuning process able
to enhance the practical utility of the generated ontologies, particularly in real-
world applications?

To answer these questions, comparative experiments were conducted on GPT-4 and
Mistral 7b, two leading LLMs with distinct capabilities. These experiments assessed the
models’ performance in generating ontologies, focusing on metrics such as precision, recall,
and F1 score. The results provide valuable insights into the capabilities and limitations
of LLMs in OE and offer practical recommendations for enhancing their utility in this
specialized field.
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In this study, we opted to apply fine-tuning directly to the LLMs without first em-
ploying retrieval-augmented generation (RAG) to address domain-specific OE tasks. This
decision was driven by the need for precision and tailored adaptation to the highly spe-
cialized domain requirements. Fine-tuning integrates the domain’s specific characteristics
into the model’s internal parameters, which enhances its ability to produce contextually
precise and terminologically consistent outputs. This is particularly critical for tasks such
as OE, where maintaining strict adherence to predefined logical structures and workflows
is paramount. Conversely, while RAG excels at dynamically retrieving and incorporating
external knowledge, it introduces additional complexity and potential latency. Moreover,
the reliance of RAG on external, often heterogeneous, data sources could lead to inconsis-
tencies, inaccuracies, or even irrelevance in outputs, especially if the external knowledge is
not meticulously curated. By prioritizing fine-tuning, we ensured greater control over the
model’s behavior and outputs, optimizing for performance in a domain characterized by
stable knowledge frameworks rather than dynamic informational updates. This approach
aligns with established evidence that fine-tuning is more effective than retrieval-based
methods for domains requiring precision, efficiency, and consistent adherence to structured
frameworks, making it the logical choice for our objectives in OE.

In addition to contributing to the understanding of LLMs’ application in OE, this
study highlights the broader implications of integrating machine learning with NLP for
domain-specific tasks. By addressing the challenges of domain knowledge representation,
this research sets the stage for future advancements in automating complex knowledge-
driven processes, offering a pathway towards more intelligent, context-aware systems in
diverse fields.

Overall, the goals of the presented work are as follows:

• Enhance OE with Fine-Tuned LLMs: To demonstrate how fine-tuning LLMs can
improve their performance in generating and understanding ontologies aligned with
formal principles and domain-specific requirements.

• Develop Domain-Specific OE Training Datasets: To create and utilize a structured
methodology for curating datasets based on foundational OE-related handbooks,
including question–answer pairs and translated visual elements, ensuring alignment
with OE standards.

• Provide a Comparative Analysis of LLMs: To evaluate and contrast the performance of
GPT-4 and Mistral 7B in terms of accuracy, efficiency, cost, and their ability to handle
domain-specific OE tasks, providing insights into their practical applicability.

• Apply Fine-Tuned Models to Real-World Scenarios: To explore the use of fine-tuned
LLMs in practical applications, such as Search and Rescue (SAR) missions during
wildfires, showcasing the potential utility of these models in critical, specialized fields.

• Identifying Limitations and Future Directions: To critically assess the strengths and
weaknesses of the models, emphasizing the need for hybrid solutions and domain-
specific training data to enhance their contextual understanding and emulate human
expertise effectively.

• Pave the Way for AI-Enhanced OE Tools: To advocate advancements in OE by integrat-
ing LLMs with domain-specific insights, aiming to bridge the gap between theoretical
principles and practical utility. The approach demonstrates how fine-tuned LLMs can
automate key ontology development tasks, including concept extraction, relationship
identification, and hierarchical structuring. By leveraging pre-trained models, we
reduce the reliance on manual curation, allowing for a more scalable and efficient OE
process. This advancement is particularly relevant for domains requiring management
systems, where rapid adaptation to evolving technologies is crucial.
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By addressing these goals, this paper aims to advance the field of OE by leveraging
fine-tuned LLMs, like GPT-4 and Mistral 7B, to enhance the automation and accuracy of on-
tology generation. It seeks to bridge the gap between theoretical principles and real-world
applications by developing domain-specific datasets and applying the models to practical
scenarios, such as SAR missions during wildfires. Through a detailed comparative analysis,
the study provides actionable insights, offering guidance for selecting and optimizing
models for specialized tasks. By highlighting the importance of domain-specific training
and exploring hybrid solutions, the paper sets a benchmark for integrating LLMs into
complex, knowledge-driven domains, ultimately aiming to inspire further innovation and
provide practical tools for researchers and practitioners.

While this study focuses on fine-tuning large language models (LLMs) for ontology
engineering, it builds upon the foundation of existing research in automated ontology
construction, knowledge representation, and semantic reasoning. A comprehensive review
of prior work in these areas, including relevant methodologies and applications of LLMs in
ontology engineering, is provided in Section 2. This ensures that our contributions are well
grounded within the broader context of the existing literature.

The structure of the paper is as follows. Section 2 presents the related work. Section 3
describes the proposed approach. Section 4 presents the experiments and results, and
Section 5 discusses the findings with respect to the research hypotheses. Finally, Section 6
summarizes the key findings of this study and identifies needs for future research.

2. Related Work
2.1. LLMs and OE

Zhang et al. [1] introduce a novel framework to streamline the process of OE (OE)
through conversational interactions with a language model. Their study tackles the inher-
ent complexities and resource-intensive nature of traditional OE, particularly in projects
involving stakeholders from diverse backgrounds. OntoChat aims to mitigate systematic
ambiguities and biases by facilitating requirement elicitation, analysis, and testing phases
through a conversational AI interface. The framework enables users to create user stories
and extract competency questions by interacting with a conversational agent, significantly
reducing the manual effort typically required in these initial stages. The use of large lan-
guage models (LLMs) in OntoChat allows for nuanced understanding and processing of
natural language, enhancing the generation and refinement of ontology requirements. The
paper details an evaluation of OntoChat using the Music Meta Ontology, demonstrating its
effectiveness in improving the efficiency and accuracy of OE tasks. This approach not only
streamlines the OE process but also promises to enhance the accessibility and adaptability
of ontologies in various domains by incorporating advanced AI-driven methods.

Doumanas et al. [2] detail the evolution and application of OE methods in the context
of large language models (LLMs), particularly focusing on human-to-machine centered
methodologies. The paper discusses the gradual reduction in human involvement and
corresponding increase in machine automation in the process of OE. This shift aims to
leverage the efficiency of LLMs while retaining essential human oversight. The proposed
spectrum of collaboration ranges from fully human-driven to completely LLM-driven
OE methodologies. Through systematic experimentation across various levels of human
and machine collaboration, the research evaluates the effectiveness of LLMs in creating
ontologically sound structures with minimal human input. However, it is important to
note that in this work, fine-tuning is not researched or evaluated; the study focuses solely
on simple prompting techniques. The study provides a compelling look into how LLMs
can significantly augment the OE process, making it faster and potentially more accurate
while still needing human expertise for critical assessments and adjustments.
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Garijo et al. [3] provide a detailed examination of how LLMs are applied in the domain
of OE (OE). The paper categorizes various OE tasks that can benefit from LLMs, utilizing
the Linked Open Terms (LOT) methodology as a framework for analysis. This research
identifies the core phases of OE such as requirement specification, implementation, and
maintenance, and highlights how LLMs are currently utilized within these areas. The
authors discuss the diversity in task definitions and the need for standardized benchmarks
and evaluation frameworks to measure LLM performance effectively in OE tasks. Through
their analysis, Garijo et al. reveal significant gaps and suggest potential areas for further
integration of LLMs to enhance the efficiency and effectiveness of OE processes.

Joachimiak et al. [4] discuss the development of the Artificial Intelligence Ontology
(AIO), which organizes and defines AI concepts to support standardization and under-
standing in AI research. Developed at Lawrence Berkeley National Laboratory, the AIO
employs LLMs to enhance manual curation, ensuring the ontology remains current with
rapid advancements in AI technology. AIO is structured around six principal categories
including Networks, Layers, and Bias, addressing both technical aspects and ethical consid-
erations of AI. This approach not only facilitates modular composition of AI methodologies
but also aids in navigating the ethical landscapes of AI applications, proving to be a vital
resource for AI researchers and developers.

Saeedizade et al. [5] investigate the potential of LLMs to assist in the development
of ontologies by generating OWL outputs directly from ontological requirements. The
study explores several state-of-the-art models, utilizing a variety of prompting techniques
such as Chain of Thoughts (CoT), Graph of Thoughts (GoT), and Decomposed Prompt-
ing to assess the ability of LLMs to produce sufficient quality OWL suggestions. The
research demonstrates that GPT-4 is particularly capable of generating high-quality model-
ing suggestions, significantly outperforming other models in generating structurally and
syntactically correct OWL files. This paper highlights the importance of carefully selected
prompting techniques to leverage the capabilities of LLMs effectively in OE, suggesting a
promising direction for automating this traditionally labor-intensive task.

Mateiu et al. [6] explore the potential of fine-tuning GPT-3 to automate the translation
of natural language sentences into Description Logic, specifically into OWL Functional
Syntax. Their research involves developing a Protégé plugin that assists in both developing
new ontologies and enriching existing ones by automatically translating domain-specific
natural language into formal OWL axioms under human supervision. The authors fine-
tuned the GPT-3 model using a dataset of 150 natural languages to OWL translation pairs,
covering a variety of instances and relationships. This approach leverages the linguistic
prowess of LLMs to streamline the OE process, potentially reducing the technical chal-
lenges and costs traditionally associated with manual ontology development. Their work
demonstrates a significant advancement in applying LLMs to semantic web technologies,
particularly in automating and facilitating the labor-intensive processes of OE.

Doumanas et al. [7] explore the application of LLMs to OE within the context of
Search and Rescue (SAR) operations. Their research demonstrates how LLMs can be
effectively utilized to automate the construction of ontologies, particularly for complex
and dynamic scenarios like SAR missions in wildfire incidents. However, it is important
to note that in this work, fine-tuning is not researched or evaluated; the study focuses
solely on simple prompting techniques. The paper proposes a novel collaborative OE
methodology that harnesses both human expertise and the advanced natural language
processing capabilities of LLMs. This hybrid approach facilitates the rapid development
of domain-specific ontologies, leveraging the LLMs’ ability to process and structure large
datasets into ontological knowledge, which is critical for enhancing situational awareness
and decision-making in SAR operations. The integration of LLMs into OE represents
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a significant advancement in making these operations more efficient and effective by
providing a structured knowledge framework that supports the dynamic requirements of
SAR missions.

2.2. LLMs and Fine-Tuning

Gekhman et al. [8] investigate the effects of supervised fine-tuning of large language
models (LLMs) on the introduction of new factual knowledge. They explore whether
such fine-tuning leads to an increase in the generation of factually incorrect responses—a
phenomenon known as hallucination. The study reveals that LLMs tend to acquire new
facts at a slower rate during fine-tuning, compared to facts that align with their pre-existing
knowledge. Moreover, the findings indicate a linear relationship between the amount of
new knowledge in the fine-tuning examples and the propensity of the model to hallucinate,
highlighting the challenges of integrating new factual content into pre-trained models.
The research underscores the importance of how LLMs are typically better at refining
and utilizing their pre-existing knowledge rather than acquiring new information through
fine-tuning. This has practical implications for the development and training strategies
of LLMs, especially in ensuring that they remain reliable and factual in their outputs. It
supports the notion that more controlled and carefully designed fine-tuning processes are
required to enhance model reliability without compromising the accuracy and truthfulness
of the content generated.

Chang et al. [9] propose a novel framework for enhancing the capabilities of pre-
trained LLMs for time-series forecasting. Recognizing the inherent limitations of LLMs
when applied to non-linguistic data, the study introduces a two-stage fine-tuning approach
that adapts these models to the intricacies of time-series data. This includes a time-series
alignment stage to familiarize the model with the time-series context, followed by a fore-
casting fine-tuning stage for specific forecasting tasks. Moreover, their method incorporates
a unique two-level aggregation strategy to handle multi-scale temporal information effec-
tively. The LLM4TS framework demonstrates superior performance across several datasets,
outperforming state-of-the-art methods and offering significant improvements in few-shot
scenarios, thus highlighting the potential of LLMs in domains beyond their initial linguistic
training. This approach not only extends the applicability of LLMs but also enhances their
efficiency and accuracy in handling complex time-series forecasting tasks.

Jeong [10] in his study delves into the nuances of employing LLMs specifically tailored
for the financial sector. This research highlights the critical importance of dataset selection,
preprocessing, and model choice, which are pivotal for fine-tuning LLMs to effectively
address the unique challenges of financial data. By constructing domain-specific vocabular-
ies and adhering to security and regulatory compliance, the study enhances the practical
application of LLMs in financial services. Various financial scenarios, including stock price
prediction, sentiment analysis of financial news, and automated document processing,
illustrate the potential of fine-tuned LLMs to transform traditional financial operations into
more efficient and insightful practices. Through detailed experimentation and analysis,
Jeong contributes to the broader understanding of fine-tuning methodologies and their
implications for the advancement of natural language processing technology within the
business sector, specifically in finance.

Anisuzzaman et al. [11] discuss the methodology and impact of fine-tuning LLMs for
domain-specific applications, particularly within the medical field. Their comprehensive
review outlines the general steps and methodological approaches essential for effectively
adapting pre-trained LLMs to specialized tasks. It highlights the use of models like Chat-
GPT and others for fine-tuning processes that significantly enhance their applicability in
specific domains such as medical subspecialties. The paper illustrates how such fine-tuned
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models can assist in tasks ranging from pre-consultation and diagnosis to medical educa-
tion and predictive analysis, ultimately aiming to improve accuracy and utility in practical
healthcare settings. Furthermore, their study addresses the benefits and limitations associ-
ated with fine-tuning, emphasizing the importance of carefully managing the trade-offs
between model customization and operational efficiency.

Raj J et al. [12] at HCLTech offer a detailed exploration of optimizing LLMs for en-
terprise applications. Their work focuses on the practical challenges and strategies for
fine-tuning LLMs using proprietary enterprise data, highlighting the need for domain-
specific adaptations to enhance performance and maintain data privacy. The authors
provide a comprehensive guide on preparing data, selecting the right fine-tuning con-
figurations, and utilizing advanced techniques like Low Rank Adaptation (LORA) and
Quantized LORA for efficient training. They also discuss the use of retrieval-augmented
generation (RAG) as an alternative to fine-tuning, which can leverage existing models with
enhanced retrieval mechanisms to improve response quality without extensive retraining.
This work is particularly valuable for organizations looking to implement LLMs effectively
within their specific operational frameworks, ensuring that the models deliver high-quality,
domain-relevant outputs while adhering to privacy and cost considerations.

Parthasarathy et al. [13] extensively explore the intricate processes and methodologies
involved in fine-tuning LLMs. The report provides a detailed examination of various fine-
tuning approaches, including supervised, unsupervised, and instruction-based methods,
and delves into the challenges and opportunities each presents. It introduces a structured
seven-stage pipeline for LLM fine-tuning, emphasizing critical stages such as data prepa-
ration, model initialization, and hyperparameter tuning. This detailed guide highlights
innovative fine-tuning techniques like LoRA [14] and discusses the use of advanced con-
figurations such as Mixture of Experts (MoE) [15] and Direct Preference Optimization
(DPO) [16] to improve model performance and alignment with human preferences. Ad-
ditionally, the study addresses the deployment of LLMs on distributed and cloud-based
platforms, presenting a holistic view of the end-to-end fine-tuning process. This work
serves as an essential resource for both researchers and practitioners, offering actionable
insights into optimizing LLMs for specific applications while navigating the complexities
of modern AI systems.

2.3. Summary

Leveraging LLMs for OE has demonstrated potential in automating and enhancing
the OE process, yet it is underscored by critical limitations that suggest further research.
Issues such as high computational demands and potential biases in training data, often
derived from extensive web-crawled datasets, introduce data contamination and ethical
concerns [1,2]. These issues highlight the essential need for continuous advancements in
model architectures and training methodologies to elevate the reliability and fairness of
LLM outputs. In the realm of OE, the integration of LLMs aims to streamline processes
and decrease human labor, yet the importance of sustained human oversight to counter-
act biases and ensure the precision of generated ontologies is crucial [3–5]. Furthermore,
the exploration of LLMs’ automation capabilities in complex tasks like generating OWL
outputs and translating natural language into Description Logic points out the challenges
in achieving structurally and syntactically correct outputs [7,8]. Additionally, the research
underscores the significant potential of LLMs in automating ontology construction for
complex and dynamic scenarios like SAR operations, advocating collaborative method-
ologies that combine human expertise with LLMs’ processing capabilities [9]. The need
for domain-specific training and the integration of factual knowledge to mitigate the risk
of generating incorrect responses is also emphasized [10]. Innovative frameworks that
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adapt LLMs to non-linguistic data further highlight the adaptability and broad applica-
bility of these models [11]. Studies also point out the importance of tailored vocabularies
and compliance with security regulations to enhance the effectiveness of LLMs in specific
sectors like finance [12]. The benefits of fine-tuning LLMs for specialized medical tasks il-
lustrate the models’ utility in enhancing practical healthcare applications [13]. The strategic
fine-tuning of LLMs using proprietary enterprise data showcases the necessity of domain-
specific adaptations to maintain data privacy and performance [14]. Lastly, the need for a
comprehensive guide on fine-tuning LLMs suggests the complexity of optimizing these
models for various applications, advocating structured methodologies that address data
preparation, model initialization, and performance enhancement [15].

This study aims to address these identified limitations, such as poor precision and
recall and limited handling of domain-specific concepts, by implementing a comprehensive
fine-tuning and evaluation strategy that enhances the capabilities of LLMs for OE while
tackling the practical challenges highlighted in the related studies. Through the integration
of advanced prompting techniques and iterative refinement processes, this methodology
substantially improves the LLMs’ understanding and generation of domain-specific on-
tologies, ensuring higher structural and syntactical accuracy. Rigorous human validation
is also incorporated at critical stages of model training and output generation to mitigate
biases and ensure the practical utility of the generated content. Furthermore, this approach
leverages the computational efficiencies of LLMs but with a structured oversight mech-
anism that involves domain experts in the loop, ensuring that the ontologies produced
are not only technically sound but also practically applicable. This framework contributes
to the broader application of LLMs, establishing a more robust, adaptable, and scalable
methodology for automating knowledge-intensive processes.

3. Research Methodology
3.1. Overview

The research presented in this paper focuses on fine-tuning two distinct LLMs, GPT-4
and Mistral 7B, to enhance their capabilities in generating ontologies. We selected GPT-4
and Mistral 7B for fine-tuning based on a combination of factors, including availability for
fine-tuning, architectural differences, performance efficiency, and relevance to ontology
engineering tasks. GPT-4, developed by OpenAI, is a high-parameter transformer model
optimized for generating structured and semantically coherent outputs, making it well
suited for handling ontology-related logical and syntactical requirements. It also offers
robust reinforcement learning mechanisms that enhance its reasoning capabilities in com-
plex domain-specific tasks. On the other hand, Mistral 7B was chosen as a lightweight
alternative that prioritizes efficiency and cost-effectiveness. Its smaller architecture allows
for faster inference and fine-tuning cycles, making it a viable option for scenarios where
computational resources are constrained. The comparative assessment between these two
models enables us to examine the trade-offs between accuracy, computational efficiency,
and adaptability in ontology engineering applications.

The methodology encompasses several stages, starting from data preparation to the
final evaluation of the models’ performance. The objective is to equip these models with
the necessary knowledge and accuracy in OE tasks, leveraging foundational texts to create
domain-specific datasets.

3.2. Data Preparation

The first step involves creating datasets tailored for the fine-tuning process. This is
achieved by selecting foundational texts in OE. These texts are thoroughly analyzed, and
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key concepts are extracted and transformed into question–answer pairs that align with
OE requirements.

3.3. Creating Datasets

In our methodology for fine-tuning LLMs for OE, a pivotal goal was to automate
the dataset creation process as much as possible. This automation is essential not just
for improving efficiency, but also for ensuring consistency and scalability in the training
datasets. By automating this process, we aimed to minimize human error and standardize
the data quality across various training sets, which is crucial for the effective training of the
models. The rationale behind automating dataset creation includes several key factors:

1. Scalability: Manual dataset creation is inherently labor-intensive and not scalable,
particularly as the volume and complexity of source materials increase. Automation
allows us to handle larger datasets efficiently, facilitating the development of models
that can generalize across a broader spectrum of OE tasks.

2. Consistency: Manually created datasets can vary in quality and structure, depending
on the individual’s interpretation and method of data extraction. Automating this
process with LLMs helps ensure a consistent format and quality across all datasets,
thereby improving the reliability and effectiveness of the model training process.

3. Speed: Automation significantly accelerates the dataset creation process. LLMs can
quickly process extensive texts, extracting relevant information and structuring it into
the required format much faster than manual methods, thus saving valuable time
and resources.

4. Resource Optimization: By automating routine data extraction and formatting tasks,
valuable human resources can be redirected towards more complex and strategic
tasks such as refining the models’ architecture, configuring hyperparameters, and
analyzing outcomes.

To implement automated dataset creation, the process involves several steps:

• Input and Segmentation: Selected foundational texts rich in OE content are fed into
the LLMs, which automatically segmented them into manageable parts suitable for
detailed processing.

• Extraction and Structuring: The LLMs are tasked with extracting essential concepts,
definitions, and relational data from the texts. The extracted information is then
automatically structured into question–answer pairs, formatted specifically to aid in
effective model training.

• Validation and Refinement: Despite the automation, human oversight is essential.
This phase involves validating and refining the LLM outputs to ensure that the data
accurately reflects the required knowledge and is devoid of errors or irrelevant content.

• Output in JSONL Format: The structured datasets are then output in JSONL format (a
collection of JSON values, where each line is a valid JSON value, typically an object or
array), which is ideal for handling large volumes of data and simplifies integration
into the model training workflows.

The selection of chapters from the foundational texts was guided by their relevance
to core OE principles, OE methodologies and logical formalizations. We prioritized sec-
tions covering key topics such as ontology construction, class hierarchy definitions, object
property constraints, and reasoning techniques. Chapters containing visual representa-
tions (diagrams, concept maps) were also selected to ensure that non-textual knowledge
could be integrated into the dataset. These visual elements often encode relationships and
taxonomies that are critical for domain representation but may not always be explicitly
described in the text.
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In more detail, diagrams in OE textbooks frequently illustrate relationships between
concepts, taxonomical structures, and logical constrains. Since fine-tuning LLMs requires
text-based datasets, it was necessary to convert these visual elements into a structured
textual representation compatible with Q&A format. To systematically translate visual
elements into description logic, we employed a multi-step approach: diagrams were an-
alyzed to extract fundamental ontological elements such as classes, relationships and
axioms. These extracted components were mapped to description logic expressions, and in
case where ambiguities arose (e.g., conflicting relationships or missing formal constrains),
textual descriptions from the same chapter were referenced for clarification. Any incon-
sistencies were manually reviewed and, when necessary, validated by domain experts to
ensure logical coherence before incorporation into the dataset.

To ensure that the dataset represents a broad and comprehensive coverage of OE
knowledge, we cross-validated the generated Q&A pairs against competency questions
designed for ontology evaluation. Each selected chapter was assessed based on its contri-
bution to foundational OE knowledge and its ability to support domain-specific ontology
generation tasks. Furthermore, manual interventions were employed where automation
introduced gaps-such as cases where multiple plausible interpretations of an ontology
concept existed. These interventions ensured that the dataset maintained high accuracy
and alignment with established OE principles.

Through this automated approach to dataset creation, we not only optimize the use of
resources, but also enhance the models’ training efficiency and efficacy. This sets a solid
foundation for the subsequent stages of fine-tuning the LLMs, ultimately enabling them to
generate practical, domain-specific ontologies effectively.

3.4. Model Fine-Tuning

The fine-tuning process is tailored for each model, with specific steps adjusted based
on the characteristics and initial performance of GPT-4 and Mistral 7B.

3.4.1. GPT-4 Fine-Tuning

Fine-tuning GPT-4 for OE involves several strategic steps (Figure 1) designed to
enhance its performance specifically for generating structured ontologies:

1. Initial Configuration: GPT-4 is set up with basic parameters tailored to ontology
generation, ensuring it starts from a robust baseline.

2. Incremental Fine-Tuning: GPT-4 benefits from the ability to sequentially build upon
previous fine-tunings. This means that each subsequent fine-tuning session starts
from the last fine-tuned model, allowing the model to incrementally improve and
adapt based on the cumulative knowledge it has acquired. This approach is efficient
as it leverages prior adjustments without needing to retrain from scratch each time.

3. Parallel Prompt Processing: One of the unique capabilities of GPT-4 is its ability to
run parallel prompts with GPT-4o and other pre-trained models from OpenAI. This
feature is particularly useful in OE, as it allows the model to handle multiple aspects
of ontology generation simultaneously, improving processing time and coherence in
the generated outputs.

4. Iterative Refinement: The fine-tuning process is iterative, with ongoing adjustments
based on intermediate results. This step is crucial to optimize the model’s understand-
ing of OE nuances and to refine its output quality.
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3.4.2. Mistral 7b Fine-Tuning

Fine-tuning Mistral 7B, while similar in goal to GPT-4, involves different procedural
steps (Figure 2) due to its distinct system capabilities:

1. Initial Setup: Each fine-tuning session with Mistral 7B starts with the basic Mistral
model. Unlike GPT-4, Mistral does not support sequential fine-tuning on top of previ-
ously adjusted models. Therefore, each new fine-tuning session requires uploading
not just the new dataset, but all previous datasets used in earlier sessions. This repeti-
tive data loading is necessary to maintain continuity and consistency in the model’s
learning process.

2. Lack of Parallel Processing Capabilities: Mistral 7B does not have the capability to
run parallel prompts or utilize concurrent processing with other pre-trained models.
Each prompt must be processed sequentially. Initially, the basic Mistral model runs
the prompt to establish a baseline before the fine-tuned versions are applied. This
sequential approach ensures that each version of the model is strictly aligned with the
incremental improvements intended through the fine-tuning.

3. Data Re-Upload for Each Session: For Mistral, each fine-tuning session is mainly
standalone. This necessitates re-uploading all historical datasets for each new round of
fine-tuning, a requirement that ensures the model does not lose the context or learning
from previous sessions but does add to the setup time and computational load.

These detailed fine-tuning processes for GPT-4 and Mistral 7B showcase the nuanced
approaches required to optimize each model’s capabilities within the specific context of OE.
GPT-4’s ability to build upon previous enhancements and run parallel processing contrasts
with Mistral 7B’s need for repeated dataset uploads and sequential processing, illustrating
the operational differences between these advanced LLM platforms.

In our previous research [7], we have presented the SimX-HCOME novel OE method-
ology, achieving substantial improvements in collaborative OE. Given these positive out-
comes, we are reapplying SimX-HCOME to further refine and validate its effectiveness
in automating and enhancing the OE process. This approach continues to leverage role-
playing simulations among key stakeholders [17]—knowledge workers (KWs), domain
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experts (DEs), and knowledge engineers (KEs)—to streamline the development and verifi-
cation of ontologies with reduced human intervention and increased accuracy.
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Continuation from the previously fine-tuned model is not supported, necessitating re-training from
scratch with the combined datasets.

In the context of fine-tuning large language models (LLMs), such as GPT-4 (OpenAI
Platform) and Mistral 7B (Mistral AI Le Platform), we opted to use an online platform
that operates on a token-based payment system instead of conducting the fine-tuning
locally. This decision was driven by several strategic considerations that align with the
goals of accessibility, ease of use, and computational efficiency. Local fine-tuning requires
substantial computational resources, often necessitating advanced GPUs, which can be
prohibitively expensive and technically demanding. Online platforms mitigate this by
offering access to state-of-the-art computing power on a pay-as-you-go basis, making it
more cost-effective and avoiding the need for significant upfront investments in hardware.
Moreover, these platforms are accessible to users without deep programming knowledge,
simplifying the process through user-friendly interfaces and providing resources like pre-
built scripts and comprehensive documentation. This democratizes access to advanced
tools, allowing users from various backgrounds to experiment with and deploy AI solutions
tailored to their needs. The community support and professional assistance available on
these platforms also make them an invaluable resource for both novice and experienced
users. Choosing to use an online platform with a token-based access model for fine-tuning
LLMs strategically aligns with our objectives to maximize efficiency, reduce barriers to
entry, and democratize access to cutting-edge AI technology, ensuring that individuals and
organizations, regardless of their technical proficiency or resource availability, can harness
the power of advanced LLMs for OE and other AI-driven endeavors.

To quantitatively assess the performance of our models, we compared their outputs
against a reference ontology [18] constructed by human domain experts. This expert-
created benchmark served as a gold standard, allowing us to evaluate precision, recall, and
ultimately the F1 score of the generated ontologies. Our choice to focus on the domain of
disaster management—particularly SAR operations in wildfire incidents—was not arbitrary.
Members of our research team and co-authors possess direct professional experience in
this area, having participated in real-world scenarios and policy development related to
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emergency response and resource allocation. Our prior research has already explored OE
integrating LLMs in SAR missions. This existing domain knowledge makes it possible
to ground our OE experiments in genuine, practice-informed requirements. By applying
OE principles to a field we know intimately, we aim to ensure that the results are not only
theoretically valid but also practically relevant.

This initial experiment thus lays a foundation for iterative improvements. Future steps
will involve refining our approach to hyperparameters, expanding our training dataset,
and incorporating iterative fine-tuning cycles. By doing so, we aim to enhance both the
coverage and accuracy of generated ontologies and ultimately contribute meaningful,
domain-specific insights to the field of disaster management and emergency response.

3.4.3. Computational Efficiency, Hardware Considerations, and Automated
Hyperparameter Configuration

To ensure accessibility and ease of replication, we opted for pre-trained models rather
than open-source alternatives that require specialized computational resources. This deci-
sion allows experiments to be conducted on standard computing devices without high-end
hardware requirements. All experiments were performed on a MacBook Air M1 (2021) with
8 GB RAM, an 8-Core CPU, and a 7-Core GPU, demonstrating that our methodology does
not rely on dedicated GPU clusters or cloud infrastructure. This choice ensures that our ap-
proach remains practical and reproducible for researchers working with limited resources.

To compare the computational efficiency of the models, we analyzed both fine-tuning
time and cost. Mistral 7B required only three fine-tuning sessions, costing €4, €5.5, and
€7 respectively, each taking approximately 5 min. In contrast, GPT-4 required an initial
dataset loading phase lasting approximately one hour (as documented in our GitHub
screenshot), with fine-tuning costs ranging from €7 to €10 per session, depending on dataset
size. These results indicate that Mistral 7B offers a more cost-effective and time-efficient
fine-tuning process, whereas GPT-4 requires additional time for dataset preparation but
provides a more optimized API-based adaptation. These trade-offs should be considered
when selecting a model for ontology engineering tasks.

In our fine-tuning experiments with both models, we opted for an automated hyperpa-
rameter configuration rather than manual tuning. This decision was motivated by the goal
of making the fine-tuning process more accessible to researchers and practitioners without
deep expertise in hyperparameter optimization. By leveraging the framework’s default
automated settings, the model was able to adjust learning parameters dynamically based on
the dataset size, training steps, and optimization objectives, eliminating the need for man-
ual intervention. Using automated hyperparameter settings led to a more stable training
process but also introduced certain limitations. The model exhibited slower initial learning
improvements, as the automated configuration did not include aggressive optimization
strategies such as adaptive learning rate decay or manual gradient clipping. However,
the benefit of this approach was that it reduced the risk of overfitting or instability, which
can sometimes occur with aggressive hyperparameter tuning. Furthermore, the consis-
tency observed in later fine-tuning iterations suggests that automated settings provided a
balanced learning strategy, allowing Mistral 7B to generalize well across domain-specific
ontology structures. While this approach facilitated a smoother fine-tuning experience,
future research could explore the impact of alternative hyperparameter configurations, such
as manually adjusting batch sizes, learning rates, or weight decay parameters, to further
optimize model performance. Our methodology remains adaptable, allowing others to
experiment with different settings while maintaining the overall workflow for fine-tuning
LLMs in ontology engineering.
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4. Experiments
4.1. Overview

The overarching goal of our work is to develop a fine-tuned model that can generate
and curate structured semantic knowledge from carefully selected foundational texts. In
this context, the experiments presented in this section aim to (i) substantiate the validity
and effectiveness of the proposed approach, (ii) quantify the extent to which ontologies
produced by the proposed method are accurate and complete and (iii) provide insight for
the adjustment of hyperparameters and the fine-tuning cycles.

In the initial stage of our experimental framework, our primary aim was to tailor a
state-of-the-art large language model (LLM)—specifically GPT-4—to meet the specialized
demands of OE. By drawing upon authoritative works and core research in the domain,
we sought to guide the model’s internal representations toward not only understanding
complex ontological concepts but also systematically distilling them into organized, readily
accessible knowledge components.

Central to this effort was the translation of rich, often unstructured textual sources
into a more structured question–answer (Q&A) format aligned with OE requirements.
This reformatting step was intended to bring clarity and consistency to the knowledge
extraction process, ensuring that the resultant information could be seamlessly integrated
into ontology design and maintenance workflows. As stated above, the key focus was to
produce model outputs that are both faithful to the source material and directly applicable to
engineering tasks. In doing so, we established the foundation for subsequent experiments:
refining the model’s capabilities, assessing its performance against domain criteria, and
ultimately advancing the state of the art in ontology-based systems development.

To ensure the model’s training material was both authoritative and comprehensive,
we began by selecting a curated set of foundational texts spanning the core principles,
practices, and methodological frameworks of OE. These texts, specifically “Semantic Web
for the Working Ontologist” by Dean Allemang and Jim Hendler [19], “A Semantic Web
Primer” by Grigoris Antoniou, Paul Groth, Frank Van Harmelen, and Rinke Hoekstra [20],
and “An Introduction to OE” by Maria Keet [21], were chosen for their well-established
reputation and broad coverage of the field.

Drawing upon these works provided a rich, multifaceted source of knowledge that en-
compasses everything from basic terminology and conceptual underpinnings to advanced
reasoning techniques and modeling strategies. Incorporating content from these references
allowed us to capture the full spectrum of OE concerns—from high-level conceptual de-
sign to the practicalities of semantic data integration. By anchoring our data preparation
workflow in these authoritative texts, we created a knowledge base that is both robust and
aligned with established industry and research standards, ensuring that the fine-tuning
process would build upon a solid intellectual foundation.

A crucial step in our data preparation process involved segmenting the source material
into more granular, manageable units. Given that each of our selected foundational texts
was structured into chapters typically spanning 20 to 30 pages, we chose the chapter as a
natural starting point for segmentation. This segmentation was motivated both by practical
considerations—such as the limits on the amount of text that could be processed effectively
by the model at once—and by the desire to maintain thematic coherence within each unit
of analysis. We aimed to ensure that each chapter’s content was rich enough to provide
meaningful context for knowledge extraction, yet not so large as to overwhelm the model’s
processing capacity.

To further refine this process, we adopted a working assumption that each page, on
average, could yield approximately three to four Q&A pairs. Aggregated at the chapter
level, this translated to roughly 60 Q&A pairs per chapter, providing a balanced dataset
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that captured a chapter’s conceptual breadth without diluting its core insights. However,
we soon encountered a key technical constraint: even at the chapter level, the complexity
and length of the text could exceed GPT-4’s input limitations. In response, we developed a
strategy of breaking down chapters into smaller, more targeted passages before converting
them into structured Q&A pairs. This approach not only ensured compliance with the
model’s constraints but also helped produce a data corpus that was both rich in detail and
amenable to systematic fine-tuning.

To transform our collected textual and visual materials into a structured, machine-
readable format, we employed a methodical approach centered on prompt engineering
and iterative Q&A generation. Our overarching content request specified would produce a
total of approximately 60 Q&A pairs per chapter to comprehensively capture all relevant
knowledge. However, to maintain processing stability and manage the complexity of
generating such a large number of pairs, we implemented a batching strategy. Instead of
producing all 60 Q&A pairs in a single run, we limited each iteration to just 15 Q&A pairs,
ensuring that the model could handle each request with minimal degradation in quality
or coherence.

In addition to handling textual information, we also incorporated non-textual knowl-
edge into this pipeline. Specifically, diagrams, schemas, and images found within the
source material were not ignored; rather, we instructed the model to translate these visual
artifacts into structured description logic forms. By doing so, we captured the structural
and relational nuances that often cannot be conveyed through text alone. This step ensured
that the final dataset not only reflected the factual and conceptual content of the chapters
but also integrated their visual representations into a coherent semantic framework.

An illustrative example of our prompt design demonstrates the elaborate control
exercised on the data generation process. For instance, consider a prompt asking for a
total of 60 Q&A pairs derived from a chapter. The prompt might direct the model to
first produce 20 fully formed, context-rich Q&A pairs—with “big-full responsive answers
where is needed”—before proceeding to generate subsequent sets of Q&A pairs (Figure 3).
Throughout the process, we emphasized adherence to the original chapter’s structure and
order, reminding the model to respect the natural progression of topics and ensure that
no critical details were omitted or rearranged. Through careful prompt engineering and
iterative, numerically controlled batching, we created a reliable pathway to building a
high-quality JSONL dataset suitable for fine-tuning and subsequent OE tasks.

In order to ensure the generation of comprehensive and contextually accurate Q&A
pairs, we employed a carefully crafted prompt. This prompt instructed the model to
produce the questions and answers in batches, guided by the structure of the original text:

“I want in total 60 questions-answers. Give me now the first 20 messages-answers (big-full
responsive answers where is needed) and remember when is necessary translate the visual content
into descriptive text. You will continue to produce the rest of the messages-answers, after this
prompt, so remember to give them in order of the chapter flow and not rearranged. Remember also
you have to include all the knowledge on the pages and represent it in the queries”.

Once the initial batches of Q&A pairs were generated, a systematic post-generation
review process was conducted to ensure that each entry was both relevant and aligned
with our OE objectives. During this evaluation, we identified and removed any generic or
off-topic questions—such as those asking for a simple chapter summary without delving
into underlying ontology concepts—because they did not enhance the model’s conceptual
understanding. This rigorous filtering step helped maintain the quality of our dataset by
ensuring that each Q&A pair contributed substantively to the OE domain.

Following the initial pruning, we undertook a targeted refinement phase aimed at
further enhancing the semantic richness and ontological depth of the Q&A pairs. Rather
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than settling for surface-level queries, we endeavored to guide our Q&A sets toward
exploring ontology-related semantics, including classes, relations, and properties, as well as
the use of RDF, OWL, and SPARQL. We also emphasized the integration of visual elements—
originally presented as diagrams, schemas, or other graphical representations—into a
formalized description logic framework. Through this iterative process, we progressively
distilled the Q&A content into a resource that was not only high in quality and domain
specificity, but also finely attuned to the principles and practices central to OE.
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Throughout the data generation process, we encountered two main challenges. First,
GPT-4 occasionally stopped responding before completing the requested number of Q&A
pairs. To address this, we refined our prompting strategy by limiting each prompt to
smaller batches of approximately 15 Q&A pairs. This approach reduced the cognitive
load on the model, ensuring more stable and consistent outputs across iterations. The
second challenge involved translating complex visual representations—such as diagrams
and schemas—into coherent description logic statements. While the model could produce
initial textual representations, often these required careful human verification to confirm
accuracy and completeness. By manually reviewing and refining the model’s outputs, we
were able to ensure that the final Q&A sets faithfully captured both the textual and visual
nuances of the source material.

4.2. Results
4.2.1. GPT-4 Fine-Tuning

As an initial step in our experimentation, we fine-tuned a GPT-4 model using a dataset
derived exclusively from the book “Semantic Web for the Working Ontologist” by Dean
Allemang and Jim Hendler [19]. This dataset, extracted and structured as Q&A pairs, aimed
to capture the core ontological engineering principles, classes, relations, and foundational
concepts detailed within the text. For this first fine-tuning run, we opted to rely on the
automated configuration of hyperparameters to evaluate the out-of-the-box adaptability of
the approach. Specifically, we trained the model for 3 epochs at a batch size of 1, utilized a
learning rate (LR) multiplier of 2, and set the temperature to 1. After approximately 53 min,
the fine-tuned model was ready for testing.
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To thoroughly assess performance, we prompted both the newly fine-tuned model and
a baseline GPT-4 version (here referenced as GPT-4o) with a scenario involving OE require-
ments, role-playing elements to simulate an iterative discussion, and a set of competency
questions relevant to the domain. By running both models in parallel (Figure 4), we aimed
to establish a comparative benchmark. The attached table (first row of the fine-tuning
results—Tables 1 and 2) provides quantitative insights: While the fine-tuned model did
not achieve the breadth of classes or properties identified by the reference standard, it did
present different patterns of true positives, false positives, and false negatives compared
to the basic GPT-4 baseline model. Although the fine-tuned model exhibited a higher
precision—reflecting its tendency to produce fewer incorrect identifications—it came at the
cost of lower recall, suggesting that it recognized fewer relevant concepts overall.

Table 1. Performance comparison of the baseline GPT-4 model and successive fine-tuned iterations
in generating ontological classes, evaluated against a human expert reference ontology. The table
highlights changes in true positives, false positives, false negatives, as well as in precision, recall, and
F1 score, over multiple refinement steps.

Method Number
of Classes

True
Positive

False
Positives

False
Negatives Precision Recall F1 Score

Reference Ontology 80

GPT-4 Basic Model 13 9 4 71 69% 11.25% 0.1935

GPT-4 Fine-Tuned Model 1 5 4 1 76 80% 5% 0.0941

GPT-4 Fine-Tuned Model 2 12 10 2 70 83% 12.5% 0.2173

GPT-4 Fine-Tuned Model 3 16 13 3 67 81.25% 16.25% 0.2708
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Table 2. A summary of the GPT-4 model’s performance on identifying and classifying object proper-
ties at various stages of fine-tuning, measured against a human expert reference ontology. The table
provides true positives, false positives, false negatives, and the resulting precision, recall, and F1
scores for each iteration.

Method Number of Obj.
Properties

True
Positive

False
Positives

False
Negatives Precision Recall F1 Score

Reference Ontology 60

GPT-4 Basic Model 5 0 5 60 0% 0% 0

GPT-4 Fine-Tuned Model 1 10 3 7 57 30% 5% 0.0857

GPT-4 Fine-Tuned Model 2 4 1 3 59 25% 1.66% 0.0312

GPT-4 Fine-Tuned Model 3 3 2 1 58 66.6% 3.33% 0.0634

In this early stage, the results highlight a critical tension in OE tasks: precision versus
recall. The fine-tuned model, somewhat more conservative in its output, yielded fewer
spurious results but also missed some relevant ones. These findings underscore the impor-
tance of iterative refinements and additional data augmentation. They also suggest that
automated hyperparameter settings, while convenient, may not fully optimize performance
for nuanced, domain-specific tasks, but that in our research is not the case as we try to
automate the process as much as possible.

In the second fine-tuning iteration, we introduced additional training data from the
book “A Semantic Web Primer” by Grigoris Antoniou, Paul Groth, Frank Van Harmelen,
and Rinke Hoekstra [20], building upon the previously fine-tuned model trained solely
on Semantic Web for the Working Ontologist. The same automated hyperparameters
were retained: three epochs, a batch size of 1, an LR multiplier of 2, and a temperature of
1. This iteration completed in just 56 min, reflecting a relatively quick adaptation to the
new knowledge.

When we re-ran the same OE prompt, the model once again assumed the prescribed
role-playing format, producing an iterative conversation among the Knowledge Engineer,
Domain Expert, and Knowledge Worker. This consistency in role adherence suggests that
the foundational instructions from the first iteration had effectively “set the stage”, allowing
the model to integrate new conceptual material without losing the interactive structure.

Crucially, the results (Tables 1 and 2) indicate a marked improvement over the first
iteration. Compared to the initial fine-tuned model, the second iteration revealed both
an increase in true positives and a better balance between precision and recall. While
the first iteration’s fine-tuned model demonstrated high precision but struggled to iden-
tify a broad range of relevant concepts (resulting in low recall), the second iteration im-
proved recall, capturing more of the classes and properties present in the reference ontol-
ogy. As a consequence, the F1 score—an indicator of the model’s overall effectiveness—
rose substantially.

In practical terms, these enhancements mean that by supplementing the training data
with content from a Semantic Web Primer, the model gained exposure to a broader spectrum
of OE principles and examples. This enrichment allowed it to recognize and align with
more elements of the expert-crafted reference ontology, thereby elevating its performance
from merely being conservative and selective (high precision, low coverage) to a model
that can identify a more representative set of relevant concepts (improved recall) while
retaining strong precision. In short, the second fine-tuning iteration not only consolidated
the model’s grasp of established ontology concepts but also expanded its reach, making it
more adept at reflecting the richness and diversity of a benchmark ontology constructed by
human experts.
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In the third fine-tuning iteration, we integrated an additional dataset derived from
“An introduction to ontology engineering” by Maria Keet [21], supplementing the model’s
existing training from the two previous sources. Using the same automated hyperparame-
ters (3 epochs, batch size of 1, LR multiplier of 2, and a temperature of 1), this fine-tuning
process took approximately 52 min. Although the prompt remained structured around
a three-role iterative discussion scenario, the model’s response this time favored a more
direct approach to ontology construction. It still recognized the roles, but was less dialog-
oriented and more focused on systematically adding classes and properties to meet the
competency requirements.

When compared to the previous two fine-tuning stages, the third iteration shows a
notable evolution in the model’s performance metrics (Tables 1 and 2). For classes, there is
an uptick in both the number of classes correctly identified and the F1 score—a sign that the
model is beginning to strike a more favorable balance between precision and recall. Earlier
iterations either exhibited high precision but very low recall, or a slight improvement in
recall at the cost of introducing more false positives. Now, with the introduction of concepts
from Maria Keet’s work, the model appears to have better internalized ontology design
principles, allowing it to capture a broader spectrum of relevant classes while maintaining
decent precision.

The results for object properties follow a similar pattern, though the improvements
are more modest. Initially, the model struggled to identify many correct object properties,
either missing the majority of them or producing extraneous, unrelated properties. After
the third fine-tuning iteration, it identifies a slightly higher proportion of the correct object
properties and does so with improved precision and a marginally better recall than before.
While still far from exhaustive coverage, this incremental progress suggests that the model
is starting to glean more nuanced relational structures from the domain literature.

The reasons behind these improvements likely stem from the cumulative knowledge
gained: each additional training corpus deepens the model’s understanding of ontological
structures, methodologies, and best practices. The OE text by Keet, in particular, provides
systematic insights into ontology design and evaluation, helping the model not only to
propose classes and properties but also to do so in a manner more aligned with expert
reference ontologies.

Nevertheless, the model’s performance, while improved, still does not match the hu-
man expert reference. To achieve even better results, especially in terms of recall (covering
more of the relevant concepts), it may be beneficial to introduce a targeted domain-specific
dataset focused squarely on Search And Rescue missions in wildfire scenarios. Such a
specialized dataset would provide richer domain knowledge, reduce guesswork, and
help the model produce an ontology that is both semantically rigorous and thoroughly
comprehensive. By grounding the model more firmly in the actual domain of disaster
management and Search And Rescue operations, future fine-tuning efforts could yield
an ontology that closely approaches the quality of expert-curated benchmarks (Further
Experimentation Section).

4.2.2. Mistral 7B Fine-Tuning

For the Mistral 7B experiments, our methodology departed from the approach detailed
in Section 3.4.1. While we continued to leverage the same foundational OE datasets,
the operational workflow required a more hands-on, iterative process. This shift was
necessitated by the distinct platform architecture and configuration requirements of the
Mistral environment, which differ significantly from the streamlined setup provided by
OpenAI. Unlike with the GPT-4 runs—where fine-tuning could be performed iteratively
within the same ecosystem—adopting Mistral 7B involved re-uploading the entire dataset
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and re-establishing the training parameters each time a new fine-tuning run was initiated.
This ensured a rigorously controlled refinement process but also introduced additional
logistical overhead, as every iteration had to be executed from a fresh baseline tailored to
the Mistral platform’s unique constraints.

In this first fine-tuning iteration with Mistral 7B, we used the same OE dataset as
before, but the process of adjusting hyperparameters was carried out manually because the
platform did not have the option of automated selection. Despite the model successfully
recognizing and maintaining the role-playing framework established in the prompt—
distinguishing between a Knowledge Engineer, Domain Expert, and Knowledge Worker—
it did not produce the requested ontology on the first attempt. Although the prompt
explicitly instructed the model to generate the ontology, it initially provided only the
iterative discussion without the final ontology construction. Consequently, we had to
prompt it again, which resulted in the eventual creation of the ontology in Turtle (TTL)
format (Figure 5).
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tuned version (right). Although the model understood the role-based scenario from the outset, it
did not produce the requested ontology in response to the initial prompt and required an additional
prompt before the ontology was finally generated in Turtle format.

Upon reviewing the ontology that Mistral 7B generated (Table 3), we observed that it
produced a total of 21 classes. However, closer inspection revealed that 16 of these were
duplicates, effectively leaving us with approximately 8 distinct classes. A plausible reason
for this duplication could be that the model latched onto certain terms or phrase structures
repeatedly, due to pattern replication rather than conceptual understanding. For instance,
the model may have recognized the lexical pattern of a class name and recreated variations
of it without introducing genuinely new semantic content. This behavior might stem from
a combination of factors: the complexity of the prompt, the model’s relative inexperience
with the specific domain content (compared to more extensively fine-tuned models), or
subtle ambiguities in the training data that led to repetitive outputs. Additionally, Mistral
7B, being a smaller model than GPT-4 and using a more manually handled fine-tuning
process, may have fewer internal parameters to leverage for nuanced differentiation among
closely related concepts. While the model did understand the narrative setup and roles, it
struggled to follow through with the ontology generation on the first attempt and produced
a partially redundant set of classes on the second. These initial results suggest that, at this
stage, Mistral 7B may require more careful prompt engineering, possibly more domain-
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specific training data, or further iterative refinements to reduce redundancy and ensure
that each generated class represents a truly distinct and meaningful ontological concept.

Table 3. The performance of the Mistral 7B model across various fine-tuning stages, compared to
a human expert reference ontology. The table summarizes the number of classes identified, true
positives, false positives, and false negatives, as well as the resulting precision, recall, and F1 scores
for each iteration.

Method Number
of Classes

True
Positive

False
Positives

False
Negatives Precision Recall F1

Score

Reference ontology 80

Mistral 7B Basic Model 19 14 6 67 68.4% 15.25% 0.2626

Mistral 7B Fine-tuned Model 1st 21 3 18 77 14.2% 3.75% 0.0594

Mistral 7B Fine-tuned Model 2nd 12 6 6 74 50% 7.5% 0.1304

Mistral 7B Fine-tuned Model 3rd 0 0 0 0 0% 0% 0

Compared to the Mistral Basic Model’s initial performance on object properties, the
first fine-tuned iteration presents a clear regression (Table 4). The baseline model identified
some object properties correctly, registering a few true positives alongside several false
positives. After the first fine-tuning, however, the model failed to produce any true positives
and only produced false positives. In other words, it not only missed every correct object
property from the reference set but also introduced erroneous ones. This result indicates
that, rather than refining the model’s understanding of relationships within the domain,
the first round of fine-tuning appears to have destabilized its ability to discern object
properties altogether. When placed in the context of previous approaches—such as the
GPT-4 fine-tuned models, which at least maintained some level of correct object property
identification—this drop is particularly concerning. GPT-4-based models, while imperfect,
showed incremental gains in precision or recall after repeated fine-tuning. In contrast, the
first fine-tuning of the Mistral 7B model led to a scenario in which the model no longer
confidently identified any correct object properties, marking a significant performance gap
compared to prior methods.

Table 4. The performance of the Mistral 7B model in identifying object properties at each fine-tuning
stage, measured against a human expert reference ontology. The table details the progression (or
regression) in terms of true positives, false positives, false negatives, and derived metrics (precision,
recall, F1 score).

Method
Number of

Obj.
Properties

True
Positive

False
Positives

False
Negatives Precision Recall F1

Score

Reference ontology 60

Mistral 7B Basic Model 17 4 13 56 23.5% 6.66% 0.1038

Mistral 7B Fine-tuned Model 1st 4 0 4 60 0% 0% 0

Mistral 7B Fine-tuned Model 2nd 0 0 0 0 0% 0% 0

Mistral 7B Fine-tuned Model 3rd 0 0 0 0 0% 0% 0

In this second fine-tuning iteration using Mistral 7B, we incorporated both the original
dataset and the new one, effectively building upon the model that had already been exposed
to the OE patterns from the first dataset. This cumulative training provided a stronger
foundation of domain knowledge and formatting expectations. As a result, unlike in
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the first iteration, the model succeeded in generating the requested ontology on the first
attempt, without needing a follow-up prompt.

Qualitatively, the model’s response showed a more seamless integration of the role-
based narrative and the final goal—producing a well-structured ontology (Table 3). The
ontology’s classes were introduced more coherently, reflecting a better conceptual mapping
of key domain elements. While the quantitative metrics (precision, recall, and F1 score)
may not have improved dramatically when compared to the previous iteration, the ability
of the model to immediately produce a functioning ontology suggests it was better aligned
with the task requirements. This indicates that the additional dataset and iterative fine-
tuning have begun to guide the model toward a more stable and contextually appropriate
representation of the ontology, making the second fine-tuning a noteworthy qualitative
improvement over the first.

The second fine-tuning iteration did not improve upon the shortcomings observed
after the first (Table 4). In fact, it eliminated all attempts at identifying object properties
entirely—no true positives, but also no false positives. While removing false positives could
be seen as the model becoming more conservative, the lack of any true positives or mean-
ingful predictions indicates that the model has essentially “given up” on identifying object
properties. This outcome might suggest that the additional training data or instructions did
not help the model internalize the relationships between classes and their corresponding
object properties. Instead of correcting course, the second fine-tuning iteration pushed
the model toward a stance of total non-commitment. Comparing this to previous results,
including the GPT-4 fine-tuned models, makes the problem stark. GPT-4 iterations typically
attempted to refine their object property recognition, and even if they struggled, they did
not default to a state of complete inactivity. The Mistral 7B model’s second iteration shows
no productive engagement with the domain’s relational structures, falling well short of
both its own baseline performance and GPT-4’s incremental improvements in similar stages
of refinement.

By the time we reached the third fine-tuning iteration with Mistral 7B, its performance
in class identification had deteriorated to the point of producing no meaningful outputs
at all (Table 3). This result starkly contrasts with the reference ontology’s comprehensive
structure of 80 classes and falls well short of any progress achieved in earlier attempts. In
fact, while the first fine-tuning run offered some semblance of engagement—albeit with du-
plicates and low precision—and the second iteration at least attempted to identify a handful
of correct concepts, the third yielded a complete absence of true positives. Compared to
GPT-4’s iterative refinements, which, despite challenges, consistently showed incremental
gains or at least balanced trade-offs in precision and recall, Mistral 7B’s final iteration
shows no such adaptability. The model’s stagnation could stem from multiple factors: its
smaller size and capacity relative to GPT-4, the manual and more cumbersome re-upload
process required for each new fine-tuning stage, and possible misalignments between the
prompt instructions, data structure, and Mistral’s internal representation capabilities. Taken
together, these issues suggest that the model was neither fully assimilating the domain
knowledge from the training sets nor adjusting its latent space to accurately reflect the
reference ontology’s complexity, ultimately resulting in disappointingly null outputs by
the end of the third fine-tuning round.

Furthermore, the model’s performance on object properties remained stagnant at zero
across all relevant metrics: no true positives, no false positives, and no false negatives
(Table 4). This flatline suggests that the model has not recovered or improved its internal
representation of object properties. Instead, it remains in a neutral state of producing no
object property identifications at all. In comparison, previous models—particularly the
GPT-4-based ones—demonstrated some capacity for adaptation over multiple fine-tuning
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rounds, either increasing their precision or expanding their recall. The persistent zero-
performance state in the Mistral model’s third iteration emphasizes a critical failure to
benefit from iterative training, and it underscores the challenge of aligning Mistral 7B with
the complex relational reasoning required in OE tasks. While GPT-4 fine-tuning rounds
often yielded at least incremental gains or trade-offs (such as improved precision at the cost
of reduced recall), the Mistral 7B model’s repeated failure to identify any object properties
indicates that its training regime and data exposure might need substantial revision.

4.2.3. Error Analysis

To provide a deeper analysis of model performance, we examined errors in the gen-
erated ontologies to understand recurring limitations and potential challenged. Errors
were primarily observed in three areas: (1) generating invalid axioms, where models
produced statements that were either syntactically incorrect or logically inconsistent;
(2) mismatched relationships, where object properties were incorrectly assigned, lead-
ing to incorrect domain and range specifications; and (3) poorly structured hierarchies,
where models misclassified subclasses under incorrect parent concepts, affecting the overall
ontology structure.

One notable example of invalid axiom generation was observed in Mistral 7B’s han-
dling of disjoint class constraints. It classified Firefighter as a subclass of FirstResponder,
correctly indicating that all firefighters are first responders. However„ it then correctly
classified Firefighter as a subclass of “not FirstResponder”, implying that firefighters are
explicitly not first responders. This contradiction creates an inconsistency in the ontology, as
an entity cannot belong to both class and its negation. Such errors disrupt logical reasoning
and can cause failures in automated inference systems. A correct ontology should either
maintain Firefighter as a subclass of FirstResponder without contradiction or correctly
define disjointness when necessary. Mistral 7B also incorrectly assigned the isAssignedTo
relationship between firetrucks and firefighters. The model stated that a firetruck is as-
signed to a firefighter, which is incorrect. In reality, it is firefighters who are assigned to
firetrucks, not the other way around. This error misrepresents the logical structure of the
ontology and could lead to incorrect reasoning in applications. The correct relationship
should define firefighters as the subject of the assignment, with firetrucks as the object.
Poorly structured hierarchies were frequently observed in cases where models had to infer
subclass relationships. For example, Mistral 7B placed “EmergencyResponseTeam” as a
subclass of “FirstAidKit”, which is a category error. GPT-4, on the other hand, successfully
maintained the integrity of subclass structures but tended to create overly granular subclass
divisions when unnecessary, leading to ontology bloat.

These observations highlight the different strengths and weaknesses of each model and
reinforce the necessity of structured fine-tuning with domain-specific datasets to improve
the logical coherence of ontology outputs.

4.3. Discussion
4.3.1. Quantitative Evaluation Metrics

The comparison between GPT-4 and Mistral 7B for generating domain-specific ontolo-
gies through fine-tuning reveals significant contrasts in their capabilities and highlights
areas requiring further refinement. Both models were fine-tuned using foundational OE
texts, and their performance was evaluated based on precision, recall, and F1 scores com-
pared to a benchmark ontology crafted by human experts. The results from Section 4.2
illustrate the differing abilities of the two models to integrate and represent complex
ontological knowledge.
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GPT-4 demonstrated a notable capacity for incorporating foundational knowledge and
iteratively improving its outputs through successive fine-tuning. Although the initial results
were modest, each fine-tuning iteration led to incremental improvements in precision, such
as reaching 83% in the second iteration, indicating better accuracy in identifying relevant
classes. However, its recall metrics, such as 12.5% in the same iteration, reflect persistent
challenges in capturing the breadth of the benchmark ontology. More specifically, for
class identification, the precision of the basic model starts at 69% and improves to 83% by
the second fine-tuned model, an increase of approximately 20.3%. In the final iteration,
precision stabilizes at 81.25%, confirming a consistent upward trend. However, recall
progresses more slowly, increasing from 11.25% in the basic model to 16.25% in the third
fine-tuned model, a relative improvement of 44.4%. This discrepancy between precision and
recall indicates that while GPT-4 becomes increasingly accurate, it still struggles to identify
a broader set of relevant classes, reflected in its F1 score, which improves from 0.1935 in
the basic model to 0.2708 in the final iteration—an overall improvement of approximately
39.9%. In the evaluation of object properties, GPT-4 begins with no true positives in its basic
form, yielding a precision and recall of 0%. However, fine-tuning progressively improves
precision, which reaches 66.6% by the third iteration. Despite this, recall remains extremely
low, improving only marginally from 0% to 3.33%. As a result, the F1 score, which starts at
0, achieves only 0.0634 by the final iteration. GPT-4 consistently displayed a capacity to
adapt and refine its understanding of the domain, effectively leveraging the prompts and
incorporating iterative feedback.

In contrast, Mistral 7B faced more pronounced limitations. While the first fine-tuning
iteration demonstrated the model’s ability to generate classes, the presence of duplicate
classes and a relatively low precision of 14.2% highlighted significant issues with internal
consistency. Subsequent iterations showed slight improvements in precision and recall but
remained far behind GPT-4 in both metrics. By the third iteration, Mistral 7B completely
failed to produce meaningful outputs, with precision and recall dropping to 0%, indicating
a complete breakdown in its ability to align with the benchmark ontology. These results
underscore the inherent architectural and computational constraints of Mistral 7B compared
to GPT-4. More specifically, for class identification, the basic model achieves a precision
of 68.4% and a recall of 15.25%, resulting in an F1 score of 0.2626. However, the first
fine-tuned iteration shows a sharp decline in performance, with precision dropping to
14.2%, a decrease of 79.2%, while recall plummets to 3.75%, reflecting a 75% reduction.
Although precision recovers to 50% in the second fine-tuning iteration, recall remains low
at 7.5%, and the final iteration fails entirely, producing no true positives and reducing
recall to 0%. Despite an improvement in precision to 80% in the third iteration, this result
is misleading, as it arises in the absence of any identified classes, effectively nullifying
practical utility. In the case of object properties, Mistral 7B exhibits similar trends. The basic
model begins with a precision of 23.5% and a recall of 6.66%, yielding an F1 score of 0.1038.
However, fine-tuning results in complete failure across all iterations. The first fine-tuned
model identifies no true positives, leading to a precision and recall of 0%. Subsequent
iterations show no recovery, with precision and recall remaining at 0%. Even though the
final iteration reports a precision of 80%, this figure is deceptive, as the absence of any true
positives means the model fails to provide any meaningful object property identification.

The disparity in performance between the two models can be attributed to several
factors. First, GPT-4’s larger parameter space and advanced architecture equipped it to
handle the logical reasoning and complexity required for OE tasks. Conversely, Mistral 7B’s
smaller size limited its ability to generalize and represent nuanced relationships effectively.
Second, the fine-tuning methodologies differed significantly. GPT-4 employed an iterative
approach, building upon previous fine-tuned models, which facilitated cumulative learning
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and enhanced performance. Mistral 7B, due to platform constraints, required re-uploading
datasets for each iteration, disrupting continuity and hindering knowledge retention. Third,
while GPT-4 consistently understood and executed the role-playing prompts designed to
guide the ontology generation process, Mistral 7B struggled with prompt comprehension
and produced incomplete or redundant outputs.

Despite GPT-4’s superior performance, both models fell short of fully replicating
the benchmark ontology. This highlights a critical limitation in their ability to generalize
domain-specific knowledge solely from foundational texts. For instance, GPT-4 and Mistral
7B struggled with object properties, with the former achieving a maximum precision of
66.6% but low recall, while the latter failed to produce any meaningful outputs in later
iterations. These shortcomings suggest a gap in the models’ ability to integrate complex,
domain-specific relationships and semantic structures.

To address these challenges, further experimentation is essential. Incorporating real-
world domain-specific datasets, such as those derived from Search and Rescue (SAR)
missions, could significantly enhance the models’ contextual understanding and enable
them to generate more robust and realistic ontologies. Such datasets would provide a
richer foundation for fine-tuning, allowing the models to align more closely with practical
requirements. Additionally, expanding the scope and depth of competency questions
could help capture intricate relationships and guide the models toward improved precision
and recall. This would not only refine their outputs but also make them more relevant to
real-world applications.

In conclusion, while GPT-4 demonstrated greater potential for OE tasks compared
to Mistral 7B, both models exhibited limitations that underscore the need for more com-
prehensive datasets and refined methodologies. Incorporating domain-specific data and
leveraging iterative, feedback-driven approaches would likely yield more robust ontolo-
gies and bridge the gap between automated generation and expert-crafted benchmarks.
These advancements could establish large language models as indispensable tools for
domain-specific knowledge representation, ultimately enhancing their utility in OE and
related fields.

4.3.2. Qualitative Analysis

Beyond numerical evaluation metrics, it is essential to analyze the ontologies’ struc-
tural integrity, semantic coherence, and practical usability. The qualitative assessment
provides deeper insight into the generated ontologies’ logical consistency, hierarchy forma-
tion, and alignment with expected domain-specific knowledge.

1. Structural soundness: one of the key factors in assessing ontology quality is the correct
hierarchical arrangement of concepts. GPT-4 consistently maintained structured and
logically aligned hierarchies, preserving correct superclass-subclass (subsumption)
relationships in most cases. However, it occasionally overgeneralized categories,
grouping semantically distinct concepts under broader umbrella terms, requiring
manual refinement. In contrast, Mistral 7B, particularly in early iterations, exhibited
misclassifications and redundancy issues, such as assigning multiple conflicting
parent classes to a single entity. However, with additional domain-specific fine-tuning,
Mistral 7B showed significant improvement in class hierarchy consistency, correcting
misplaced classifications and better differentiating subclass relationships.

2. Semantic coherence: the accuracy of relationships and constraints between entities
is another important aspect of ontology quality. Mistral 7B struggled in initial fine-
tuning iterations with incorrect domain and range assignments for object properties,
often misaligning relationships (e.g., classifying an entity to an incorrect category).
For example, it initially misclassified “EmergencyResponder” as both a subclass of



Appl. Sci. 2025, 15, 2146 26 of 34

“MedicalPersonnel” and “Firefighter”, leading to inconsistencies. After incorporating
domain-specific datasets, the model demonstrated improved understanding, cor-
rectly placing “EmergencyResponder” as a broader category encompassing both roles
without conflicting subclass assignments. GPT-4, on the other hand, rarely misclas-
sified relationships but occasionally omitted necessary inverse relations, requiring
manual correction.

3. Usability and practical implementation: a key consideration in evaluating ontology
quality is its real-world applicability. GPT-4-generated ontologies were more struc-
tured and required minimal post-processing, making them suitable for immediate in-
tegration into knowledge-based systems. However, they sometimes lacked specificity,
necessitating additional manual refinement. Mistral 7B required more adjustments
in earlier iterations, but after targeted fine-tuning, its outputs became increasingly
reliable, showcasing improved adaptability to domain-specific needs. This suggests
that while GPT-4 provides a strong initial structure, Mistral 7B has the potential to
generate highly customized ontologies when trained with more targeted data.

The evolution of Mistral 7B’s ontology quality through iterative fine-tuning highlights
the impact of dataset quality, competency question expansion, and domain adaptation.
These refinements allowed the model to generate ontologies that better align with expert-
defined structures. The comparison between GPT-4 and Mistral 7B demonstrates that while
pre-trained models can produce well-formed structures, domain-specific fine-tuning plays
a crucial role in refining their logical consistency and contextual accuracy.

4.3.3. Expert Evaluation on Ontology Quality

Beyond quantitative evaluation metrics, expert assessment plays a critical role in
validating the logical coherence and practical applicability of generated ontologies. To
further understand the strengths and weaknesses of the models, domain experts were
consulted to assess the conceptual accuracy of class definitions and relationships, the
logical consistency of generated axioms, and the overall utility of the ontology for real-
world applications.

Experts noted that GPT-4 generally produced well-structured ontologies, but some
inconsistencies appeared in domain-specific adaptations, requiring manual corrections. For
example, in a generated ontology for Search and Rescue (SAR) operations, GPT-4 correctly
classified IncidentCommander as a subclass of EmergencyResponder but mistakenly in-
cluded it under both OperationalUnit and CommandUnit without clear distinction. This
overlap had to be manually refined to maintain logical consistency.

Mistral 7B, on the other hand, was found to be more computationally efficient but
required substantial post-processing due to missing or misclassified relationships. In some
cases, it omitted necessary transitive relationships. For example, the model failed to infer
that if a Firetruck isAssignedTo Station1 and Station1 isPartOf ResponseZoneA, then the
Firetruck should be implicitly associated with ResponseZoneA. These inference gaps were
commonly identified in expert reviews.

To ensure the reliability of expert assessments, multiple evaluators reviewed the ontolo-
gies independently. While formal inter-rater reliability calculations were not conducted, the
consistency of independent expert feedback suggests a high level of agreement in assessing
logical coherence and applicability. Experts particularly emphasized that while fine-tuned
LLMs significantly aid ontology engineering, human validation remains essential to refine
structure, resolve ambiguities, and correct logical inconsistencies.
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4.4. Extended Experimentation

To enhance the robustness of the models and their ability to generate domain-specific
ontologies, we expanded our experimentation by integrating two additional, domain-
specific, datasets. These datasets were designed with the expertise of the authoring team,
under their capacity as domain experts, and aimed to address the unique requirements of
SAR operations during wildfire incidents. The need for domain-specific datasets beyond
basic OE knowledge emerged from the findings of previous experiments, where the results
fell short of representing the full capabilities of the large language models (LLMs) and their
fine-tuning potential. While the models demonstrated some ability to process foundational
OE concepts, their outputs lacked the contextual richness and applicability needed for
complex, real-world scenarios. This highlighted the importance of integrating targeted,
domain-specific datasets to boost the models’ performance and enable them to generate
more robust and nuanced ontologies.

The first dataset builds on the original set of 18 competency questions derived from
the reference ontology. Recognizing gaps in coverage and the need for more granular
representation of wildfire SAR operations, we subdivided the competency questions into
subsections reflective of specific operational contexts as followed: Weather-Related Ques-
tions, Incident-Related Questions, Data from Human and Earth Observations, Missions and
Services, Population and Community Impact, Environmental Impact and Rehabilitation,
Technology and Modeling, Safety and Protocols and some Additional Questions. This struc-
tured expansion was guided by critical areas of knowledge that must be represented for
effective SAR decision-making. By integrating domain expertise, we extended the dataset to
48 competency questions, ensuring comprehensive coverage of SAR ontology requirements.
These competency questions were meticulously answered based on our domain expertise,
forming a knowledge-rich dataset. The finalized Q&A pairs were uploaded into GPT-4
for JSONL conversion, ensuring consistency and accessibility for fine-tuning purposes.
This expanded dataset aimed to provide nuanced insights and a broader perspective on
SAR operations, enriching the model’s training data and enabling it to represent complex,
domain-specific scenarios accurately.

The second dataset was constructed from incident report templates used by the Greek
Fire Department during actual wildfire incidents. These templates encapsulate critical
information recorded during operations, such as resource allocation, mission timelines,
environmental conditions, and outcomes. These real-world data were translated into
a textual format and subsequently processed through GPT-4 to generate Q&A pairs in
JSONL format. This dataset brings an operationally grounded perspective to the model,
incorporating the terminology, procedural details, and contextual nuances encountered in
SAR missions. By aligning the training data with practical applications, the dataset serves
to bridge the gap between theoretical ontology principles and real-world use cases.

To evaluate the impact of these datasets, we fine-tuned the models in the configurations
that each of them requires: on GPT-4 we followed the Separate Integration. Each dataset
(expanded competency questions and incident reports) was uploaded independently to
the last trained model (3rd fine-tuned) for fine-tuning. On Mistral 7B we comply with
Sequential Integration. Following the sequence used in previous experiments, we fine-
tuned the models first with the expanded competency questions dataset, followed by
the incident report dataset. This method simulated a cumulative knowledge-building
process, where the foundational ontology knowledge was augmented with real-world
operational data.

Initial experiments suggest that incorporating these datasets leads to a noticeable
improvement in the models’ ability to generate robust, contextually accurate ontologies.
The competency questions provided a theoretical framework, while the incident reports
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added operational depth, enabling the models to represent both strategic and tactical
dimensions of SAR operations effectively. Further evaluation of precision, recall, and F1
scores, as well as qualitative assessments of generated ontologies, is ongoing to quantify
these improvements. These datasets highlight the critical role of domain-specific knowledge
in enhancing the utility of large language models for OE tasks, particularly in specialized
applications like wildfire SAR missions.

4.4.1. GPT4

The new fine-tuned GPT-4 model demonstrated exceptional performance in generat-
ing a robust SAR ontology. By incorporating domain-specific datasets such as the expanded
competency questions and wildfire incident reports, GPT-4 effectively utilized its role-
playing capabilities to structure and generate a cohesive ontology. The model generated an
ontology that aligns closely with practical SAR requirements, including detailed classifi-
cations of classes, object properties, and data properties (Tables 5 and 6). As seen in the
ontology metrics, GPT-4 produced a structure with 72 distinct classes, 32 object properties,
and 7 data properties, effectively capturing both theoretical and operational aspects. The
model also achieved logical coherence, as evidenced by the 284 logical axioms and the
robust use of subclass relationships. These results highlight GPT-4’s ability to translate
domain-specific knowledge into comprehensive and structured ontologies, showcasing its
potential as a reliable tool for OE in specialized fields like wildfire SAR operations.

Table 5. A comparison of class generation metrics between the fine-tuned GPT-4 and Mistral 7B
models after incorporating domain-specific datasets and their basic models, highlighting significant
improvements in recall and F1 scores compared to previous experiments limited to OE training data.

Method Number of
Classes

True
Positive

False
Positives

False
Negatives Precision Recall F1 Score

Reference 80

GPT-4 Basic Model 13 9 4 71 69% 11.25% 0.1935

Mistral 7B Basic Model 19 14 6 67 68.4% 15.25% 0.2626

New Fine-Tuned GPT-4 72 32 40 48 44.4% 40% 0.4210

New Fine-Tuned Mistral 7B 65 39 26 41 60% 48.75% 0.5379

Table 6. A comparison of object property generation metrics between the fine-tuned GPT-4 and
Mistral 7B models after incorporating domain-specific datasets and their basic models, emphasizing
significant improvements in recall and F1 scores over previous experiments relying solely on OE
training data.

Method Number of Obj.
Properties

True
Positive

False
Positives

False
Negatives Precision Recall F1

Score

Reference 60

GPT-4 Basic Model 5 0 5 60 0% 0% 0

Mistral 7B Basic Model 17 4 13 56 23.5% 6.66% 0.1038

New Fine-Tuned GPT-4 32 14 18 46 43.75% 23.33% 0.3043

New Fine-Tuned Mistral 7B 51 27 24 33 52.94% 45% 0.4864

More specifically, for class identification, the GPT-4 basic model achieved a precision
of 69%, a recall of 11.25%, and an F1 score of 0.1935. In comparison, the new fine-tuned
GPT-4 model demonstrated a precision of 44.4%, showing a 35.6% decrease, but its recall
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improved dramatically to 40%, marking a 255.5% improvement. This significant recall
increase contributed to the F1 score rising to 0.4210, an overall improvement of 117.5%.
For object property identification, the GPT-4 basic model started with 0% precision and
0% recall, producing an F1 score of 0. After fine-tuning, the new GPT-4 model achieved
a precision of 43.75% and a recall of 23.33%, representing significant improvements over
the baseline. The F1 score increased to 0.3043, highlighting the model’s enhanced ability to
identify object properties and maintain a reasonable balance between precision and recall.
In summary, the new fine-tuned GPT-4 model demonstrates substantial gains over the
basic model, particularly in recall, which shows remarkable improvement across both tasks.
Despite a decrease in precision for class identification, the overall F1 score improvements
confirm the effectiveness of the fine-tuning process.

4.4.2. Mistral 7B

The fine-tuned Mistral 7B model exhibited an impressive leap in performance during
the generation of domain-specific ontologies for SAR operations. Unlike the earlier exper-
iments, where Mistral 7B struggled compared to GPT-4, this iteration not only matched
but surpassed GPT-4 in both depth and contextual accuracy. Leveraging domain-specific
data, the model elevated the interaction among the three roles based on the HCOME OE
methodology [17]. The iterative discussions, enriched by the model’s ability to simulate
nuanced domain knowledge, produced more insightful and well-rounded outputs, with
enhanced clarity and purpose in defining and linking key concepts relevant to wildfire
SAR scenarios. The ontology metrics further validate this success. Mistral 7B generated an
ontology comprising 65 classes and 51 object properties, surpassing GPT-4 in capturing
relationships and semantic depth (Tables 5 and 6). More specifically, for class identification,
the Mistral 7B basic model achieved a precision of 68.4%, a recall of 15.25%, and an F1 score
of 0.2626. After fine-tuning, precision decreased to 60%, reflecting a slight 12.3% decrease,
but recall improved significantly to 48.75%, corresponding to an improvement equal to
219.7%. As a result, the F1 score rose to 0.5379, marking an overall improvement of 104.8%.
This highlights a substantial enhancement in the model’s ability to identify relevant classes,
despite the slight decline in precision. For object property identification, the basic Mistral
7B model achieved a precision of 23.5%, a recall of 6.66%, and an F1 score of 0.1038. The
new fine-tuned model improved precision to 52.94%, a 125.3% increase, and recall to 45%,
reflecting an exceptional 575.7% improvement. This significant recall gain was the main
contributor to the F1 score rising to 0.4864, an overall improvement of 368.4%.

Notable additions included classes and properties that detailed relationships between
incidents, services, and environmental observations. The model introduced richer subclass
hierarchies and properties, reflecting its improved grasp of the domain-specific complexities.
This performance underscores the model’s ability to semantically integrate knowledge,
connecting heterogeneous data sources such as sensor observations and real-time weather
conditions, and translating these into meaningful ontological structures. The fine-tuned
Mistral 7B also excelled in leveraging discussions to optimize the ontology iteratively.
The elevated level of role-play discussions facilitated not just the coverage of competency
questions but also the generation of more context-aware and operationally useful ontologies.
Mistral’s ability to encapsulate operationally grounded and semantically rich outputs
signifies its potential as a cost-efficient alternative to larger models, capable of yielding
high-quality domain-specific ontologies tailored to real-world SAR challenges.

The performance of Mistral 7B exhibited significant inconsistencies across different
fine-tuning sessions. Initial training attempts (as presented in Section 4.2.2, Tables 3 and 4)
displayed notable deficiencies, such as class duplication, misclassification of object prop-
erties, and inconsistencies in relationship assignments. These issues primarily stemmed
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from early-stage hyperparameter settings, dataset preprocessing inconsistencies, and lim-
itations in the initial prompt structures guiding the model. However, later iterations
(Section 4.4.2, Tables 5 and 6) demonstrated a marked improvement, even surpassing
GPT-4 in certain cases.

Several key factors contributed to this transition from suboptimal to high-performance
results:

1. Data Preprocessing Adjustments: Early dataset formatting included overlapping
or redundant entity descriptions, leading to class duplication and property assign-
ment errors. By refining the dataset through more structured entity extraction and
deduplication techniques, later training runs exhibited more consistent outputs.

2. Incorporation of Domain-Specific Datasets: A significant improvement was observed
when ontology fine-tuning was expanded to include domain-specific datasets, which
provided the model with richer contextual knowledge and helped mitigate early-stage
errors in entity classification and relationship structuring. By grounding Mistral 7B
in more domain-relevant examples, it was able to generate more coherent ontologies
with improved logical consistency.

3. Expansion of Competency Questions: The number and complexity of competency
questions used for model evaluation were increased in later iterations, provid-
ing a broader test set that reinforced correct interpretations of ontology structures.
This iterative reinforcement led to improved model accuracy in reasoning-based
ontology generation.

4. Iterative Fine-Tuning and Model Adaptation: The observed performance shift also
highlights the cumulative effect of iterative fine-tuning, where each session builds
upon prior refinements. While early fine-tuning attempts exposed model weak-
nesses, successive sessions reinforced correct classifications, improving coherence in
ontology structuring.

These findings suggest that fine-tuning LLMs for ontology engineering requires a
dynamic and adaptive strategy. Performance can fluctuate significantly based on domain-
specific datasets and the iterative refinement process. This highlights the importance of
continuous optimization and specific domain data to maximize model effectiveness in
domain-specific knowledge representation.

5. Discussion
The results from Tables 5 and 6 underscore the transformative impact of incorporating

domain-specific datasets into the fine-tuning process of large language models (LLMs),
particularly in comparison to the earlier experiments outlined in Tables 1–4. These domain-
specific datasets, focusing on wildfire SAR operations, allowed both GPT-4 and Mistral 7B
to achieve significantly better precision, recall, and F1 scores, demonstrating their enhanced
ability to represent domain-specific knowledge comprehensively.

In the earlier experiments (Table 1), GPT-4 exhibited limited recall and F1 scores even
after iterative fine-tuning on basic OE knowledge. The baseline GPT-4 model achieved
a precision of 69% but suffered from a recall as low as 11.25% and an F1 score of 0.1935.
Similarly, Mistral 7B struggled with basic datasets, often failing to generate distinct classes
without duplication, with minimal improvements across iterations.

With the introduction of domain-specific datasets, both models demonstrated signifi-
cant performance gains in class generation. As shown in Table 5:

• GPT-4 improved its recall to 40%, doubling its performance compared to prior experi-
ments. The addition of SAR-specific knowledge enriched the model’s understanding,
reflected in its ability to generate 72 distinct classes while maintaining a precision
of 44.4%.
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• Mistral 7B, previously outperformed by GPT-4 in class generation, surpassed GPT-4 in
this iteration. It achieved a recall of 48.75% and an F1 score of 0.5379, emphasizing its
ability to better integrate domain-specific insights into a semantically rich ontology
with 65 classes. This represents a marked improvement over its earlier iterations
(Table 3), where precision and recall were as low as 14.2% and 3.75%, respectively.

Object property generation results also highlight the value of domain-specific datasets
(Table 6). Previously (Table 2), both GPT-4 and Mistral 7B struggled significantly with
object property identification, with Mistral 7B failing to generate any true positives in later
iterations and GPT-4 showing limited recall improvements.

• GPT-4, in its fine-tuned version with SAR datasets, generated 32 object properties,
achieving a precision of 43.75% and an F1 score of 0.3043. Although this was a
significant improvement over its earlier attempts (maximum recall of 3.33% in Table 2),
it still lagged behind Mistral 7B in representing relational knowledge effectively.

• Mistral 7B, benefiting from sequential fine-tuning with domain-specific datasets, ex-
celled in this category. It generated 51 object properties, achieving a recall of 45% and
an F1 score of 0.4864. This improvement reflects the model’s ability to map complex
relationships, such as those between incidents, resources, and environmental factors, a
crucial aspect of wildfire SAR operations.

The comparative analysis across these experiments underscores the critical role of
domain-specific datasets in OE. While basic OE knowledge provides a foundational under-
standing, it falls short of enabling LLMs to address real-world, complex domains effectively.
The SAR-specific datasets bridged this gap, enriching the models’ knowledge bases with
operationally grounded concepts and relationships.

The inclusion of expanded competency questions and incident report templates al-
lowed the models to achieve the following:

• Better address the complexity of domain knowledge, including subclass hierarchies
and property relationships.

• Improve recall, particularly in identifying classes and properties relevant to wildfire
SAR operations.

• Enhance F1 scores, indicating a balanced ability to reduce false positives while captur-
ing more true positives.

These results suggest that fine-tuning LLMs with targeted, domain-specific data are
pivotal for achieving robust knowledge representation. Domain-specific datasets not only
enable the models to better emulate human expert ontologies but also highlight their ability
to capture operational nuances, such as environmental impacts, mission timelines, and
resource allocation.

Furthermore, the performance disparity between Mistral 7B and GPT-4 in this context
demonstrates that smaller models like Mistral, when equipped with rich domain-specific
data, can outperform larger models trained on general datasets. This finding is particu-
larly valuable for applications where computational resources or budget constraints favor
smaller models.

Further experimentation reinforces the importance of aligning training datasets with
practical, domain-specific requirements. By integrating such datasets, LLMs can achieve
higher precision and recall, bridging the gap between theoretical OE and real-world applica-
tions. These insights pave the way for more refined methodologies and hybrid approaches
to optimize knowledge representation in specialized fields like wildfire SAR operations.
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6. Conclusions
This research paper explores the fine-tuning of LLMs, specifically GPT-4 and Mistral

7B, for OE tasks. Through comprehensive experiments, the impact of general OE training
and domain-specific fine-tuning on the models’ ability to generate robust and practical on-
tologies was evaluated. The results validated the identified research questions and revealed
critical insights into the role of targeted data in enhancing the models’ performance.

The first research question (RQ1) related to the fine-tuning of LLMs on general OE
concepts and the improvement in their performance was partially validated. While fine-
tuning improved the baseline capabilities of both GPT-4 and Mistral 7B, the results high-
lighted a few limitations. GPT-4 demonstrated incremental improvements, achieving a
precision of 81.25% and a modest recall increase from 11.25% to 16.25% in OWL class
generation after three iterations. Mistral 7B, however, struggled with basic OE datasets,
showing limited progress and regression in key metrics, with a recall of only 15.25% in
preliminary experiments. These findings suggest that while foundational OE training is
essential, it alone cannot shape models for the nuanced requirements of domain-specific
knowledge representation.

The second research question (RQ2)—that incorporating domain-specific datasets
would enhance the practical utility of generated ontologies—was strongly validated. The
addition of SAR-specific datasets, including expanded competency questions and real-
world wildfire incident reports, significantly improved the models’ performance. GPT-4’s
recall for class generation increased to 40%, with an F1 score of 0.4210, while its recall for
object properties rose to 23.33%. More notably, Mistral 7B, which had previously lagged,
surpassed GPT-4 in both class and object property metrics. It achieved a recall of 48.75%
and an F1 score of 0.5379 for classes, and a recall of 45% and an F1 score of 0.4864 for
object properties. These results underscore the transformative impact of domain-specific
data in enabling models to accurately represent complex and operationally grounded
knowledge structures.

The key findings from this study highlight the necessity of combining domain-specific
datasets and fine-tuning methodologies for maximizing LLM performance in specialized
tasks. The integration of SAR-specific data enriched the models’ understanding of key
relationships and hierarchies, enabling the generation of semantically rigorous and practi-
cally relevant ontologies. Mistral 7B’s performance in these experiments was particularly
noteworthy, as it not only overcame its earlier struggles but also outperformed GPT-4 in
recall and F1 scores for both classes and object properties. This demonstrates that smaller,
cost-efficient models can achieve competitive results when trained on targeted data.

This paper also revealed the importance of aligning training data with real-world
applications. Earlier experiments using general OE data showed limited recall and low
F1 scores, indicating a lack of contextual understanding. In contrast, domain-specific
fine-tuning improved both models’ ability to generate ontologies that aligned with prac-
tical needs, including detailed representations of SAR concepts such as weather impacts,
resource allocation, and incident timelines. These improvements emphasize that domain-
specific datasets bridge the gap between theoretical ontology principles and operational
utility. In conclusion, this research confirms the critical role of fine-tuning with domain-
specific datasets in enhancing the utilization of LLMs for OE. While general OE training
lays the groundwork, it is insufficient for generating robust, application-ready ontologies.
Domain-specific datasets enable models to achieve significantly higher recall and F1 scores,
reflecting better contextual understanding and practical relevance. The findings demon-
strate the potential of LLMs, particularly when fine-tuned with targeted data, to advance
OE and serve as indispensable tools for knowledge representation in specialized fields
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such as wildfire SAR operations. These insights pave the way for future studies to refine
fine-tuning methodologies and extend the applicability of LLMs across diverse domains.

While this study demonstrates the feasibility of fine-tuning LLMs for ontology en-
gineering in SAR contexts, an important next step is the integration of these ontologies
into operational decision support systems. In practical applications, ontology-driven
reasoning can be embedded into SAR platforms to enhance incident classification, auto-
mate information retrieval, and support knowledge-based decision-making. For example,
ontology-enhanced knowledge graphs could improve real-time situational awareness by
dynamically linking incident reports, geographical data, and response protocols to assist
emergency teams.

Future improvements could involve incorporating retrieval-augmented generation
(RAG) strategies and active learning approaches to continuously refine the model based on
real-time domain expert feedback. This would allow the system to adapt to new terminolo-
gies, evolving threat landscapes, and emerging response protocols in SAR environments.
Such an approach could ensure that the model remains aligned with the operational needs
of first responders while improving its generalization capabilities across different emer-
gency scenarios.

Furthermore, we recognize the need for additional details regarding data preparation
steps, computational efficiency, and real-world deployment scenarios. Future research
could explore a fully operational prototype of an ontology-powered SAR assistant, system-
atically evaluating scalability, response accuracy, and integration challenges in real-world
settings. These enhancements would further solidify the role of LLMs in ontology-driven
decision support at scale.

The experiments detailed (source files, screenshots, ttl files and chat conversations)
are saved in the following GitHub repository: https://github.com/dimitrisdoumanas19/
Fine-tuning-LLMS.git (accessed on 7 December 2024).
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